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Introduction

There are at least two ways to arrive at the function for the liquidus temperature as a function

of activity of species at solid-liquid equilibrium. The first is using the Gibbs-Helmholtz

relationship, which is the most commonly found approach. The second is to use the equality

of chemical potentials of species at equilibrium without direct use of the Gibbs-Helmholtz

relation. Although likely present in the literature, a detailed account of the second method

is not easy to find. As such this approach is the subject of the present work.
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Freezing point depression

Freezing point depression is a very well known phenomenon which occurs when a solvent’s

freezing point is lowered through addition of a solute which forms a liquid solution with the

solvent. This is for example the motivation for using road salt, such as CaCl2, which, when

in solution with water, can significantly reduce the freezing temperature. The equilibrium

in question is the following equilibrium:

H2O(s) ⇀↽ H2O(l) (1)

The equilibrium temperature T fus between ice and the liquid phase (ice + L) and the

liquid phase (L) shown in Figure 1 reduces as the concentration of CaCl2 is increased. The

change in freezing point depends on the concentration of salt, and more precisely, on its

thermodynamic activity. The derivation that follows assumes a basic knowledge of thermo-

dynamics, including an understanding of the quantity of chemical potential of a species in a

given phase µphase
i .

Figure 1: Partial phase diagram of CaCl2 in H2O adapted from Conde.1
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Isochemical potential condition

In order to describe solid-liquid equilibrium, we will use the example of freezing point depres-

sion of water when in a liquid solution such as when CaCl2 is added to H2O. At solid-liquid

equilibrium for ice freezing out from a solution, the chemical potential of water is the same

in both phases:

µs
H2O = µl

H2O (2)

The above equation can be generalized for other phase equilibria conditions as well.

At the standard state at 273.15 K and 1 atmosphere of pressure, the following equality is

established:

µ0,l
H2O(T = T 0,fus)− µ0,s

H2O(T = T 0,fus) = ∆H0,fus(T = T 0,fus)− T 0,fus∆S0,fus(T = T 0,fus) (3)

Since at equilibrium, µ0,s
H2O(T = T 0,fus) − µ0,l

H2O(T = T 0,fus) = 0, this allows writing the

change in entropy of fusion at that temperature as:

∆S0,fus(T = T 0,fus) =
∆H0,fus(T = T 0,fus)

T 0,fus
(4)

At solid-liquid equilibrium, the chemical potentials of water in the liquid state will not

be at the standard state once a solute is added, but the solid will be if we assume no solute

dissolves appreciably in ice. Accordingly, the difference of water’s chemical potential in both

phases can be written as:

µl
H2O(T )− µs

H2O(T ) = µ0,l
H2O(T ) +RT lnaH2O(T )− µ0,s

H2O(T ) (5)

At the solid-liquid equilibrium, the chemical potentials in the solid phase and liquid phase
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are the same, yielding the following equality:

RT lnaH2O(T
fus) = µ0,s

H2O(T
fus)− µ0,l

H2O(T
fus) (6)

Thus, the activity of water in the liquid solution is a function of the change in chemical

potentials in the standard state of water at the equilibrium temperature. However, the

thermodynamic properties of the entropy change at standard state and enthalpy change at

standard state have to be adjusted at the right temperature. This can be achieved via the

following relations:

∆S0,fus(T = T fus) = ∆S0,fus(T = T 0,fus) +

∫ T fus

T 0,fus

∆CP (T )

T
dT (7)

∆H0,fus(T = T fus) = ∆H0,fus(T = T 0,fus) +

∫ T fus

T 0,fus

∆CP (T )dT (8)

Now we can solve for the activity of water at the fusion temperature, which in the case of

freezing point depression will be lower than the standard state fusion temperature T 0,fus.

−RT fuslnaH2O(T
fus) =

∆H0,fus(T 0,fus) +

∫ T fus

T 0,fus

∆CP (T )dT − T fus(∆S0,fus(T 0,fus) +

∫ T fus

T 0,fus

∆CP (T )

T
dT )

The above equation is exact. The left hand side is an expression for the activity of water

in the solution at the equilibrium temperature. The right hand side is a collection of terms

which depend on the standard state thermodynamic properties of the water undergoing

phase change. The entropy change term may be substituted by an enthalpy change term:
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−RT fuslnaH2O(T
fus) =

∆H0,fus(T 0,fus) +

∫ T fus

T 0,fus

∆CP (T )dT − T fus

(
∆H0,fus(T 0,fus)

T 0,fus
+

∫ T fus

T 0,fus

∆CP (T )

T
dT

)

This expression is attractive since the enthalpy of fusion of the neat solvent, here water,

is well known. Moreover, the heat capacity change upon fusion is for the neat solvent only

— not a function of the solution composition. However, in many circumstances the relevant

quantity is the activity of the solvent at a temperature other than the solid-liquid equilibrium

temperature of the solution. If we can assume the activity has no temperature dependence

between the neat solvent fusion temperature and the new fusion temperature, and we can

neglect the heat capacity change of the neat solvent upon fusion (∆CP ≃ 0), we have the

following equation:

− ln(aH2O(T = T 0,fus) ≃ −ln(aH2O(T = T fus)) =

− 1

RT fus

(
∆H0,fus(T 0,fus)− T fus(

∆H0,fus(T 0,fus)

T 0,fus
)

)

Rearranging the same terms we obtain:

ln(aH2O(T = T 0,fus) ≃ ln(aH2O(T = T fus)) =
−∆H0,fus

RT fus

(
T 0,fus − T fus

T 0,fusT fus

)
(9)

However, an exact relation between of ln(aH2O(T = T 0,fus) and the liquidus temperature of

the solution requires treatment of the water activity temperature dependence. The physical

chemistry underlying the temperature dependence of activity is quite involved and may not

easily be written with a closed form expression. However, with a phenomenological parameter

L1 which is a function of composition but approximated as independent of temperature, the

following expression can be used:
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Rln(aH2O(T1))−Rln(aH2O(T2)) ≃ −LH2O(
1

T2

− 1

T1

) = −LH2O(
T1 − T2

T1T2

) (10)

In certain circumstances, LH2O, can be fitted to experimental data of activities using the

above expression, which becomes increasingly accurate as the difference between T1 and T2

decreases. The motivation for this expression will be detailed in the following subsection.

Certain cases may require terms beyond LH2O to better account for the temperature depen-

dence of activities. Such terms include for example the relative partial molal heat capacity

J1. Figure 1 shows reported values2 of LH2O at 25 ◦C. Applying the above formula for T 0,fus

and T fus:
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Figure 2: LH2O at 25◦C from reported values2 (circles) and fit with a polynomial in the
present work (dashed lines).

Rln(aH2O(T
0,fus)) ≃ Rln(aH2O(T

fus))− LH2O

(
T 0,fus − T fus

T 0,fusT fus

)
(11)

Accordingly, we can now relate the activity of water at the neat solvent fusion temperature

to the new fusion (or freezing) temperature:3

Rln(aH2O(T
0,fus)) ≃ −(∆H fus + LH2O)(

T 0,fus − T fus

T 0,fusT fus
) (12)
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If heat capacity terms are important, the above expression can include additional terms.

For example, Lewis et al.3 consider the case where the heat capacity change upon fusion of

the neat solvent is a linear function of temperature, and assume the relative partial molal heat

capacity is a constant as a function of temperature. The latter is equivalent to considering

the temperature dependence of LH2O. We can compare equation 12 to 26-9 of Lewis et al.3

for the special case where we neglect the heat capacity upon fusion and the relative partial

molal heat capacity J1 is taken to 0.
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Figure 3: Activity of water at 25 ◦C from reported values.4

Figure 3 shows the reported activity of water as a function of concentration at a fixed

temperature. Here, the activity of water is known and one may desire to calculate the

liquidus temperature as a function of composition. The above equation can be inverted to

calculate the liquidus temperature from the activity:

T fus =
T 0,fus

1 +RT 0,fuslnaH2O
1

−(∆Hfus+L1)

(13)

Using the data from Figure 3 and equation 13, we can calculate the freezing point de-

pression as a function of concentration, or equivalently, the fusion temperature as a function

of concentration.

Figure 4 shows the freezing point depression of water as a function of CaCl2 concentration
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Figure 4: Solid-liquid equilibrium temperature T fus as a function of CaCl2 concentration
(circles5 and dashed lines) and reported5 eutectic temperature.

calculated from the data shown in Figure 3 and equation 13 (dashed lines). In the case of

LH2O=0, the agreement with the experimental points is excellent at lower CaCl2 concentra-

tions, but becomes more significant as the CaCl2 concentration increases. This is due to two

factors, the neglect of heat capacity difference upon fusion (neglected in this document) and

the temperature dependence of activity, which is accounted for here via the LH2O ̸= 0 case

(dashed blue). Here, the agreement is closer to experimental values, showing that considera-

tion of LH2O can improve the calculation of phase equilibria temperatures. It is interesting to

note that certain authors6 suggest that accounting for the effect of LH2O is more important

than ∆CP (not considered in this document), while others suggest the converse.7 Despite

not knowing the scale of importance of both these quantities on predicting freezing point

depression in a universal sense, it is clear both terms can have in certain circumstances a

non-negligible effect, in addition to J1 which can also be important.

Activity dependence on temperature

The reason for choosing the above relation for the activity dependence on temperature in

equation 10 is that the parameter LH2O is one that in principle could be measured via
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specific calorimetry experiments. The Gibbs-Helmholtz relation,3 previously avoided in this

document, allows us to identify LH2O as the partial relative molal enthalpy HE
H2O.

6 For

example:

R

[
∂lnaH2O

∂( 1
T
)

]
= H0

H2O −HH2O = HE
H2O ≃ LH2O (14)

Accordingly, LH2O should reach 1 as the solute composition reaches 0. In addition, in

this document the relative partial molal heat capacity J1 is approximated as negligible.

Liquidus lines for hydrates and higher order equilibria

As shown in Figure 1, the freezing point decreases until the first eutectic composition, after

which it can start increasing. The increase in freezing temperature with increase in salt con-

centration appears for different solid-liquid equilibria dictated by solid hydrates containing

salt, for example CaCl2(H2O)6(solid). Analogous expressions to equation 13 can be devel-

oped for solid-liquid equilibria involving hydrates, using once again the isochemical potential

condition. However, the activities of species in solution to consider will include those of the

salt and solvent in the solution, and thermodynamic properties of the solid relevant to the

equilibrium.6 The motivation for this derivation arises from my proposition that the Gibbs-

Helmholtz relation, although rigorous, is not necessarily intuitively applied to solid-equilibria

featuring different species, or a collection of equilibria in the case of for example a eutectic

point, where a liquid solution is in equilibrium with two solid phases.
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