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Introduction

There are at least two ways to arrive at the function for the liquidus temperature as a function
of activity of species at solid-liquid equilibrium. The first is using the Gibbs-Helmholtz
relationship, which is the most commonly found approach. The second is to use the equality
of chemical potentials of species at equilibrium without direct use of the Gibbs-Helmholtz
relation. Although likely present in the literature, a detailed account of the second method

is not easy to find. As such this approach is the subject of the present work.



Freezing point depression

Freezing point depression is a very well known phenomenon which occurs when a solvent’s
freezing point is lowered through addition of a solute which forms a liquid solution with the
solvent. This is for example the motivation for using road salt, such as CaCl,, which, when
in solution with water, can significantly reduce the freezing temperature. The equilibrium

in question is the following equilibrium:
H;,0¢) = Hy0q) (1)

The equilibrium temperature 7™ between ice and the liquid phase (ice + L) and the
liquid phase (L) shown in Figure 1 reduces as the concentration of CaCl, is increased. The
change in freezing point depends on the concentration of salt, and more precisely, on its
thermodynamic activity. The derivation that follows assumes a basic knowledge of thermo-
dynamics, including an understanding of the quantity of chemical potential of a species in a
phase

given phase y;
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Figure 1: Partial phase diagram of CaCl, in HyO adapted from Conde.!



Isochemical potential condition

In order to describe solid-liquid equilibrium, we will use the example of freezing point depres-
sion of water when in a liquid solution such as when CaCl, is added to HyO. At solid-liquid
equilibrium for ice freezing out from a solution, the chemical potential of water is the same

in both phases:

H20 = Mino (2)

The above equation can be generalized for other phase equilibria conditions as well.
At the standard state at 273.15 K and 1 atmosphere of pressure, the following equality is
established:

M%ZQO(T _ TO,fus) o M(I){éo (T _ TO,fus) _ AHO’qu (T _ TO,fus) o TO,fusAso,fus(T _ TO,fus) (3)

Since at equilibrium, M%ZO(T = TO0fus) #%lzo(T = T%1) = O, this allows writing the

change in entropy of fusion at that temperature as:

AHO’qu(T — TO,fus)

ASO,fus(T — TO,fus) — T07fus (4)

At solid-liquid equilibrium, the chemical potentials of water in the liquid state will not
be at the standard state once a solute is added, but the solid will be if we assume no solute
dissolves appreciably in ice. Accordingly, the difference of water’s chemical potential in both

phases can be written as:

ir20(T) = Hirzo(T) = fiiao(T) + RTasso (T) — pyizo (T) (5)

At the solid-liquid equilibrium, the chemical potentials in the solid phase and liquid phase



are the same, yielding the following equality:

RTnarso(T™) = piiso(T™) = pifizo (T™) (6)

Thus, the activity of water in the liquid solution is a function of the change in chemical
potentials in the standard state of water at the equilibrium temperature. However, the
thermodynamic properties of the entropy change at standard state and enthalpy change at
standard state have to be adjusted at the right temperature. This can be achieved via the

following relations:

Tfus A T
ASO,fus(T _ Tfus) _ ASO,fus(T _ TO,fus) + / C;( >dT (7)
T0,fus
Tfus
AHO’fUS(T — Tfus) — AHO,fus(T — TO,fus) 4 ACP(T)dT (8)
T0,fus

Now we can solve for the activity of water at the fusion temperature, which in the case of

freezing point depression will be lower than the standard state fusion temperature 7%,

— RT™ Inapzo (T™) =

Tfus

Tfus
ACp(T)AT — T (ASOs(T0Ms) | / ACp(T)

T0,fus T

AHO’qu(TO’qu)+/

T0,fus

dT)

The above equation is exact. The left hand side is an expression for the activity of water
in the solution at the equilibrium temperature. The right hand side is a collection of terms
which depend on the standard state thermodynamic properties of the water undergoing

phase change. The entropy change term may be substituted by an enthalpy change term:



— RT"™Inapyo (T™) =

Tfus 0,fus (770, fus Ttus
AH»S(T ACp(T
AHO,fus (TO,fus) + / ACP (T)dT o Tfus E ) + / P( )dT
T0,fus TO’ us T0,fus T

This expression is attractive since the enthalpy of fusion of the neat solvent, here water,
is well known. Moreover, the heat capacity change upon fusion is for the neat solvent only
— not a function of the solution composition. However, in many circumstances the relevant
quantity is the activity of the solvent at a temperature other than the solid-liquid equilibrium
temperature of the solution. If we can assume the activity has no temperature dependence
between the neat solvent fusion temperature and the new fusion temperature, and we can
neglect the heat capacity change of the neat solvent upon fusion (ACp ~ 0), we have the

following equation:

— In(ago(T = T%™) ~ —In(amo(T = Tfus» =

1 AHO,fus (TO,fus)
B RTfus TO,fus )

(AHO’qu (TO,fus) o Tfus(

Rearranging the same terms we obtain:

In(ameo(T = To’fus) ~ In(apeo (T = Tfus)) =

—AHO:fus /0fus _ rpfus
( ) o

RTfus TO,fusTfus

However, an exact relation between of In(aao (T = T%™) and the liquidus temperature of
the solution requires treatment of the water activity temperature dependence. The physical
chemistry underlying the temperature dependence of activity is quite involved and may not
easily be written with a closed form expression. However, with a phenomenological parameter
Ly which is a function of composition but approximated as independent of temperature, the

following expression can be used:



1 1 Ty — 15

RIn(apao(T1)) — Rln(apao(T3)) ~ _LH2O<E — 7—,1) = — Lo TR

) (10)

In certain circumstances, Lyso, can be fitted to experimental data of activities using the
above expression, which becomes increasingly accurate as the difference between T} and T5
decreases. The motivation for this expression will be detailed in the following subsection.
Certain cases may require terms beyond Lyso to better account for the temperature depen-
dence of activities. Such terms include for example the relative partial molal heat capacity
Ji. Figure 1 shows reported values? of Liao at 25 °C. Applying the above formula for 7701

and 7Tfus:
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Figure 2: Lo at 25°C from reported values? (circles) and fit with a polynomial in the
present work (dashed lines).

TO,fus _ Tfus
) (1)

RIn(amso (T*™)) ~ Rn(amo(T™™)) — LH20( 70, fus Tfus

Accordingly, we can now relate the activity of water at the neat solvent fusion temperature

to the new fusion (or freezing) temperature:?

TO,fus _ Tfus

RID(GHQQ(TO’qu)) ~ —(AHfus + LHQO)( T°0,fus T fus )

(12)



If heat capacity terms are important, the above expression can include additional terms.
For example, Lewis et al.? consider the case where the heat capacity change upon fusion of
the neat solvent is a linear function of temperature, and assume the relative partial molal heat
capacity is a constant as a function of temperature. The latter is equivalent to considering
the temperature dependence of Lyso. We can compare equation 12 to 26-9 of Lewis et al.?
for the special case where we neglect the heat capacity upon fusion and the relative partial

molal heat capacity J; is taken to 0.
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Figure 3: Activity of water at 25 °C from reported values.*

Figure 3 shows the reported activity of water as a function of concentration at a fixed
temperature. Here, the activity of water is known and one may desire to calculate the
liquidus temperature as a function of composition. The above equation can be inverted to

calculate the liquidus temperature from the activity:

0,fus
fus T

N ]_ —I— RTvauSlnaHgom

(13)

Using the data from Figure 3 and equation 13, we can calculate the freezing point de-
pression as a function of concentration, or equivalently, the fusion temperature as a function
of concentration.

Figure 4 shows the freezing point depression of water as a function of CaCl, concentration
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Figure 4: Solid-liquid equilibrium temperature 7™ as a function of CaCly concentration
(circles® and dashed lines) and reported® eutectic temperature.

calculated from the data shown in Figure 3 and equation 13 (dashed lines). In the case of
Lyo0=0, the agreement with the experimental points is excellent at lower CaCly concentra-
tions, but becomes more significant as the CaCl, concentration increases. This is due to two
factors, the neglect of heat capacity difference upon fusion (neglected in this document) and
the temperature dependence of activity, which is accounted for here via the Lyso # 0 case
(dashed blue). Here, the agreement is closer to experimental values, showing that considera-
tion of Lyso can improve the calculation of phase equilibria temperatures. It is interesting to
note that certain authors® suggest that accounting for the effect of Lyao is more important
than ACp (not considered in this document), while others suggest the converse.” Despite
not knowing the scale of importance of both these quantities on predicting freezing point
depression in a universal sense, it is clear both terms can have in certain circumstances a

non-negligible effect, in addition to J; which can also be important.

Activity dependence on temperature

The reason for choosing the above relation for the activity dependence on temperature in

equation 10 is that the parameter Lpso is one that in principle could be measured via



specific calorimetry experiments. The Gibbs-Helmholtz relation,?® previously avoided in this
document, allows us to identify Lyso as the partial relative molal enthalpy Hf,q.¢ For

example:

8lnaH20
o(7)

} = Hipo — Hizo = Hifao = Lo (14)
T
Accordingly, Lpso should reach 1 as the solute composition reaches 0. In addition, in

this document the relative partial molal heat capacity J; is approximated as negligible.

Liquidus lines for hydrates and higher order equilibria

As shown in Figure 1, the freezing point decreases until the first eutectic composition, after
which it can start increasing. The increase in freezing temperature with increase in salt con-
centration appears for different solid-liquid equilibria dictated by solid hydrates containing
salt, for example CaCly(H0)g(solid). Analogous expressions to equation 13 can be devel-
oped for solid-liquid equilibria involving hydrates, using once again the isochemical potential
condition. However, the activities of species in solution to consider will include those of the
salt and solvent in the solution, and thermodynamic properties of the solid relevant to the
equilibrium.® The motivation for this derivation arises from my proposition that the Gibbs-
Helmholtz relation, although rigorous, is not necessarily intuitively applied to solid-equilibria
featuring different species, or a collection of equilibria in the case of for example a eutectic

point, where a liquid solution is in equilibrium with two solid phases.
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